Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.